Preview

Problems of Fisheries

Advanced search

MODELING STOCK DYNAMICS WITH KNOWN ESTIMATIONS FOR ABUNDANCE AND CATCH AT AGE. II

Abstract

To model time series of fish abundance and catch at age data we use an approach that is based on simple fish arithmetic and takes into account unavoidable uncertainty. We assume that measurement and estimation errors are random variables and have the Laplace or Gaussian distributions. First, we evaluate coefficients of the natural and fishing mortality and parameters of density functions. Then, we represent each cohort as a dynamic Bayesian network with abundances as hidden states and catches as observations. Parameters of distribution densities for transition and observation models are evaluated at the first stage. For each cohort, we consider how to perform such basic Bayesian estimation tasks as filtering, smoothing, and prediction. We illustrate the framework application with the case of a linear Gaussian family of distributions when all Bayesian estimations are relatively simply done. All estimations and graphing were made in Julia with use of different libraries including the Fishmetica package. All symbolic manipulations were carried out in Mathematica.

About the Author

I. I. Shevchenko
The Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation


References

1. Аксютина З. М. Элементы математической оценки результатов наблюдений в биологических и рыбохозяйственных исследованиях. М.: Пищ. пром-сть, 1968. 288 с.

2. Бабаян В. К., Булгакова Т. И., Богородин Р. Г. и др. Применение математических методов и моделей для оценки запасов рыб: методические рекомендации. М.: Изд-во ВНИРО, 1984. 156 с.

3. Баранов Ф. И. К вопросу о динамике рыбного промысла // Бюл. рыб.хоз-ва. 1925. № 8. С. 26-28.

4. Васильев Д. А. Актуальные проблемы анализа параметров систем запас-промысел. М.: Изд-во ВНИРО, 2000. 265 с.

5. Засосов А. В. Динамика численности промысловых рыб. М.: Пищ. пром-сть, 1976. 312 с.

6. Малкин Е. М. Репродуктивная и численная изменчивость промысловых популяций рыб. М.: Изд-во ВНИРО, 1999. 146 с.

7. Шевченко И. И. Моделирование промысловых запасов при известных оценках возрастной структуры популяций и уловов // Вопр. рыболовства. 2017. Т. 18. № 4. С. 507-519.

8. Barton D. N., Kuikka S., Varis O. et al. Bayesian networks in environmental and resource management // Integrated Environ. Assessment Management. 2012. V. 3. № 8. P. 418-429.

9. Brooks S., Gelman A., Jones G. L. et al. Handbook of Markov Chain Monte Carlo. London: Chapman and Hall, 2011. 125p.

10. Cotte A. J. R., Burt L ., Paxton C. G. M. et al. Are stock assessment methods too complicated? // Fish Fisheries. 2004. № 5. P. 235-254.

11. Fournier D., Archibald C. P. A general theory for analyzing catch at age data // Can. J. Fish. Aquatic Sci. 1982. V.8. № 39. P. 1195-1207.

12. Gilks W. R., Richardson S., Spiegelhalter D. J. Markov Chain Monte Carlo in Practice. New York: Springer, 1996. 512 p.

13. Gudmundsson G. Time series analysis of catch-at-age observations // Appl. Statistics. 1994. V. 43. № 1. P. 117-126.

14. Hall-Arber M., Pomeroy C., Conway F. Figuring out the human dimensions of fisheries: illuminating models // Marine Coastal Fish. Dynamics, Management, Ecosystem Sci. 2009. V. 1. № 1. P. 300-314.

15. Hammond T. An application of the bayesian approach to stock assessment model uncertainty // ICES J. Mar. Sci. 2001. V 6. № 58. P. 648-656.

16. Hilborn R. The evolution of quantitative marine fisheries management 1985-2010 // Nat. Res. Modeling. 2012. № 25. P. 122-144. Kimura D. K. Approaches to agestructured separable sequential population anal- ysis // Can. J. of Fish. Aquatic Sci. 1990. V. 47. № 12. P. 2364-2374.

17. Kimura D. K. Approaches to agestructured separable sequential population anal- ysis // Can. J. of Fish. Aquatic Sci. 1990. V. 47. № 12. P. 2364-2374.

18. Kotz S., Kozubowski T. J., Podgorski K. The Laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance. Basel: Birkhauser, 2001. 349 p.

19. Kuparinen A., Mäntyniemi S., Hutchings J. A. et al. Increasing biological realism of fisheries stock assessment: towards hierarchical bayesian methods // Envir. Rev. 2012. V. 2. № 20. P. 135-151.

20. Millar R. B., Meyer R. Bayesian statespace modeling of agestructured data: fitting a model is just the beginning // Can. J. of Fish. Aquatic Sci. 2000. V. 1. № 57. P. 43-50.

21. Punt A. E., Hilborn R. Fisheries stock assessment and decision analysis: the bayesian approach // Rev. Fish Biol. Fisheries. 1997.№ 7. P. 35-63.

22. Quinn T. J., Deriso R. B. Quantitative fish dynamics. Oxford University Press, USA, 1999. 542 p.

23. Quinn T. J. Ruminations on the development and future of population dynamics models in fisheries // Nat. Res. Modeling. 2003. № 16. P. 341-392.

24. Russell S. J., Norvig P. Artificial intelligence: A modern approach. Upper Saddle River: Prentice Hall, 2010. 1152 p.

25. Särkkä S. Bayesian filtering and smoothing. Cambridge University Press, 2013. 254 p.

26. Uusitalo L. Advantages and challenges of bayesian networks in environmental modelling. Ecolog. modelling. 2007. V. 3-4. № 203 P. 312-318.


Review

For citations:


Shevchenko I.I. MODELING STOCK DYNAMICS WITH KNOWN ESTIMATIONS FOR ABUNDANCE AND CATCH AT AGE. II. Problems of Fisheries. 2019;20(2):152-163. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-2774 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).