BATHYMETRIC DISTRIBUTION OF GREENLAND HALIBUT REINHARDTIUS HIPPOGLOSSOIDES IN CONDITIONS OF DEOXYGENATION IN THE INTERMEDIATE LAYER OF THE OKHOTSK SEA
https://doi.org/10.36038/0234-2774-2021-22-2-27-39
Abstract
Bathymetric distribution of greenland halibut Reinhardtius hippoglossoides at the continental slope of the Okhotsk Sea is considered on the data of trawl surveys collected in 1980–2010s. This period is distinguished by prominent tendency to winter warming, with the ice cover decreasing and weakening of slope convection that ventilates the intermediate layer, accompanied by depletion of dissolved oxygen at the depths of halibut habitat below of 300–400 m, on average from 3,24 mL/L in 1970s to 2,68 mL/L in 2010s at the 500 m depth (to 2,25 mL/L in 2020). The deoxygenation is potentially unfavourable for deep-water species, which could be forced to leave the layers with oxygen content below the values dangerous for them. Within annual cycle of bathymetric migration, the deepest aggregations of greenland halibut are formed by large-sized adult fish at the depth up to 1000 m at Kamchatka in their pre-spawning and spawning periods (fall–winter), whereas a larger part of the population concentrates in feeding aggregations at shallower depths. Redistribution of the spawning aggregations from the depth of 900–1000 m to upper isobaths is observed in the last decades that could be caused by depletion of oxygen in this layer to the values <1 mL/L. However, the densest feeding aggregations at the depth of 400–700 m did not shiſt up, in spite of lower oxygen, but even were found deeper in the 2000–>2010s (below 600 m) than in the 1970–1990s (500–600 m). So deoxygenation in the core of the intermediate layer was not critical for greenland halibut, though the same process in the deepest portion of this layer caused its partial bathymetric redistribution. The process of deoxygenation coincided with period of weak reproduction of greenland halibut: any strong year-class did not appear in three last decades, and its population came into stable depression. However, this depression is unlikely caused by lack of oxygen, so far as redistribution of the spawners to the upper isobaths compensates completely the oxygen depletion.
About the Authors
Y. I. ZuenkoRussian Federation
Vladivostok, 690091
N. L. Aseeva
Russian Federation
Vladivostok, 690091
V. I. Matveev
Russian Federation
Vladivostok, 690091
References
1. Асеева Н.Л. Влияние изменений циркуляции вод Охотского моря на запасы чёрного палтуса у восточного Сахалина // Материалы 16 конф. по промысловой океанографии. Калининград, 2014. С. 33.
2. Зуенко Ю.И., Асеева Н.Л., Глебова С.Ю. и др. Современные изменения в экосистеме Охотского моря (2008–2018 гг.) // Изв. ТИНРО. 2019. Т. 197. С. 35–61.
3. Зуенко Ю.И., Фигуркин А.Л., Матвеев В.И. Современные изменения продукции промежуточных вод в Охотском море и их показателей // Изв. ТИНРО. 2018. T.193. C.190–210.
4. Кулик В.В., Пранц C.В., Будянский М.В. и др. Связь запасов чёрного палтуса в Охотском море с факторами внешней среды // Изв. ТИНРО. 2020. Т. 200. С. 58–81.
5. Недашковский А.П., Хен Г.В., Савельева Н.И. Гидрохимические особенности впадины ТИНРО (Охотское море) в аномально холодные годы // Изв. ТИНРО. 2018. T. 194. C. 86–98.
6. Николенко Л.П. Биология и промысел чёрного палтуса Охотского моря. Автореф. дисс. … канд. биол. наук. Владивосток: ТИНРО, 1998. 23 с.
7. Новиков Н.П. Промысловые рыбы материкового склона северной части Тихого океана. М.: Пищепром, 1974. 308 с.
8. Руководство по химическому анализу морских и пресных вод при экологическом мониторинге рыбохозяйственных водоемов и перспективных для промысла районов Мирового океана (под редакцией Сапожникова В.В.). М.: ВНИРО, 2003. 202 с.
9. Шунтов В.П. Некоторые закономерности вертикального распределения чёрного и стрелозубых палтусов в северной части Тихого океана // Вопр. ихтиологии. 1966. Т. 6. Вып. 1. С. 32–41.
10. Breitburg D., Levin L.A., Oschlies A., et al. Declining oxygen in the global ocean and coastal waters // Science. 2018. V. 359. № 6371. eaam7240. doi:10.1126/science.aam7240.
11. Ito T., Minobe S., Long M.C., Deutsch C. Upper ocean O2 trends: 1958–2015 // Geophys. Res. Lett. 2017. V. 44. № 9. P. 4214–4223. doi:10.1002/2017GL073613.
12. Ito T., Nenes A., Johnson M.S., Meskhidze N., Deutsch C. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants // Nature Geoscience. 2016. V. 9. № 6. P. 443–447. doi:10.1038/ngeo2717.
13. Keller A.A., Simon V., Chan F., et al. Demersal fish and invertebrate biomass in relation to an offshore hypoxic zone along the US West Coast // Fisheries Oceanography. 2010. V. 19. № 1. P. 76–87. doi:10.1111/j.1365–2419.2009.00529.
14. de Mutsert K., Steenbeek J., Lewis K., et al. Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model // Ecological Modeling. 2016. V. 331. P. 142–150. doi:10.1016/j.ecolmodel.2015.10.013.
15. Schmidtko S., Stramma L., Visbeck M. Decline in global oceanic oxygen content during the past five decades // Nature. 2017. V. 542. № 7641. P. 335–339. doi:10.1038/nature21399.
16. Townhill B.L., Pinnegar J.K., Righton D.A., Metcalfe J.D. Fisheries, low oxygen and climate change: how much do we really know // J. Fish Biology. 2017. V. 90. P. 723–750. doi:10.1111/jfb.13203.
17. Wishner K.F., Outram D.M., Seibel B.A., Daly K.L., Williams R.L. Zooplankton in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone expansion // Deep- Sea Research Part I. 2013. V. 79. P. 122–144. doi:10.1016/j.dsr.2013.05.012.
Review
For citations:
Zuenko Y.I., Aseeva N.L., Matveev V.I. BATHYMETRIC DISTRIBUTION OF GREENLAND HALIBUT REINHARDTIUS HIPPOGLOSSOIDES IN CONDITIONS OF DEOXYGENATION IN THE INTERMEDIATE LAYER OF THE OKHOTSK SEA. Problems of Fisheries. 2021;22(2):27-39. (In Russ.) https://doi.org/10.36038/0234-2774-2021-22-2-27-39