Preview

Problems of Fisheries

Advanced search

Using sequential particle methods and non-parametric distributions in bayesian evaluations of abundance and catch at age time series

https://doi.org/10.36038/0234-2774-2023-24-1-99-116

Abstract

We describe an approach to analyzing time series for two variables connected through the state model with abundance and catch data sets and cohort and catch equations as an example. First, we create a deterministic model with parameters that maximizes the closeness of given data and data generated by a model. Then, we obtain cohort stochastic models using the difference between initial and modeled data. They are represented as hidden Bayesian models with abundances as states and catches as observations. Using these models, one can evaluate posterior densities and calculate averages, deviations, etc. As a general matter, the recursive equations met by posterior densities have no analytic solutions. We describe several particle methods that may be used for density approximations and following calculations of their statistical quantities. All generated sample densities are smoothed with non-parametric kernel density estimation. The Fishmetica package was extended with functions for generating samples and weights for filtering, predicting and smoothing densities. Numerical simulations were conducted for a test data set. Several extensions of the approach are proposed including an additional option for comparing the basic models with the use of a likelihood function.

About the Author

I. I. Shevchenko
The Pacific branch of the Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Vladivostok, 690091



References

1. Нестеров Ю.Е. Методы выпуклой оптимизации. М.: Изд-во МЦНМО, 2010. 281 с.

2. Шевченко И.И. Моделирование промысловых запасов при известных оценках возрастной структуры популяций и уловов // Вопр. рыболовства. 2017. Т. 18. № 4. С. 507–519.

3. Шевченко И.И. Моделирование промысловых запасов при известных оценках возрастной структуры популяций и уловов. II // Вопр. рыболовства. 2019. Т. 20. № 2. С. 152–163.

4. Шевченко И.И. Применение методов частиц при байесовском оценивании временных рядов численности и уловов по возрастам // Вопр. рыболовства. 2020. Т. 21. № 2.С. 235–249.

5. Bezanson J., Edelman A., Karpinski S. et al. Julia: A fresh approach to numerical computing // SIAM Rev. Soc. Ind. Appl. Math. 2017. № 59. P. 65–98.

6. Cotter A. J. R., Burt L., Paxton C. G. M. et al. Are stock assessment methods too complicated? // Fish. Fish.(Oxf). 2004. V. 5. № 3. P. 235–254.

7. deValpine P. Review of methods for fitting time-series models with process and observation error and likelihood calculations for nonlinear, non-Gaussian state-space models // Bull. Mar. Sci. 2002. V. 70. № 2. P. 455–471.

8. deValpine P., Hastings A. Fitting population models incorporating process noise and observation error // Ecol. Monogr. 2002. V. 72. № 1. P. 57–76.

9. Doucet A., Godsill S., Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering // Stat. Comput. 2000. V. 10. № 3. P. 197–208.

10. Gordon N.J., Salmond D.J., Smith A. F.M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation // IEE Proceedings F (Radar and Signal Processing). 1993. V. 140. P. 107–113.

11. Gramacki A. Nonparametric kernel density estimation and its computational aspects. Cham: Springer, 2018. 171 p.

12. Hardle W., Muller M., Sperlich S. et al. Nonparametric and semiparametric models. V. 1. Cham: Springer, 2004.

13. Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models // J. Comput. Graph.Stat. 1996. V. 5. № 1. P. 1–25.

14. Kitagawa G. Non-Gaussian state-space modeling of nonstationary time series // J. Am. Stat. Assoc. 1987. V. 82. № 400. P. 1032–1041.

15. Megrey B.A. Review and comparison of age-structured stock assessment models // Amer. Fish. Symp. 1989. V. 6. P. 8–48.

16. Quinn T. J., Deriso R. B. Quantitative fish dynamics. Oxford University Press, USA, 1999. 542 p.

17. Russell S. J., Norvig P. Artificial Intelligence: A Modern Approach. Upper Saddle River: Prentice Hall, 2010. 1152 p.

18. Sarkka S. Bayesian filtering and smoothing. Cambridge: Cambridge University Press, 2013. 254 p.

19. Schnute J. T. A general framework for developing sequential fisheries models // Can. J. Fish. Aquat.Sci. 1994.V. 51. № 8. P. 1676–1688.


Review

For citations:


Shevchenko I.I. Using sequential particle methods and non-parametric distributions in bayesian evaluations of abundance and catch at age time series. Problems of Fisheries. 2023;24(1):99-116. (In Russ.) https://doi.org/10.36038/0234-2774-2023-24-1-99-116



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-2774 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).