Preview

Problems of Fisheries

Advanced search

Results of identification of autumn chum salmon Oncorhynchus keta (salmoniformes) of hatch-breeder origin in the Amur River basin based on the analysis of the microchemical composition of otoliths based on the materials of 2020

https://doi.org/10.36038/0234-2774-2024-25-4-77-88

Abstract

The paper presents the results of using microchemical analysis of otoliths to identify the return of autumn chum salmon, the juveniles of which are released from salmon hatcheries in the Amur basin. It was previously found that juvenile autumn chum salmon of hatchery origin were characterized by higher values of the 88Sr/43Ca ratio in the marginal zone of otoliths compared to juveniles of natural origin, which may be due to the high strontium content in the feed used to grow juveniles at hatcheries. Using the 88Sr/43Ca value to determine fish of artificial and natural origin among spawners of autumn chum salmon collected in the Amur River, at salmon hatcheries and base rivers of hatcheries, fish with a high level of the analyzed isotope ratio in the juvenile zone of otoliths were identified, which indicates their artificial origin. Among the fish from the Anyui and Udinsky hatcheries, the majority of fish (56,0 and 56,4%) are characterized by marker values above the threshold, which also indicates their artificial origin. In addition, a high proportion of such fish was found among the individuals of autumn chum salmon collected in the Amur mouth (40,2%). We obtained similar results using another method for assessing the return – the method of otolith marking of juveniles at the hatcheries (in 2015–2021) and the subsequent search for «factory» fish in a mixed sample of spawners from the lower reaches of the Amur River in 2019–2023. It should be noted that in the base rivers of the hatcheries, on the spawning grounds of autumn chum salmon located upstream from the hatcheries, the proportion of fish of hatchery origin was also identified (Anyui River – 37,9%, Gur River – 11,1%). The obtained results may indicate the effectiveness of using microchemical analysis of otoliths to identify the return of autumn chum salmon, the young of which are released from the hatchery, and also determine the need for continuing research in this direction.

About the Authors

P. B. Mikheev
Khabarovsk branch of the State Science Center of the «VNIRO»; «Perm State National Research University»
Russian Federation

Khabarovsk, 680038

Perm, 614068



V. N. Koshelev
Khabarovsk branch of the State Science Center of the «VNIRO»
Russian Federation

Khabarovsk, 680038



E. V. Podorozhnyuk
Khabarovsk branch of the State Science Center of the «VNIRO»
Russian Federation

Khabarovsk, 680038



K. S. Yakubova
«Perm State National Research University»
Russian Federation

Perm, 614068



В. О. Morozov
Khabarovsk branch of the State Science Center of the «VNIRO»
Russian Federation

Khabarovsk, 680038



A. J. Puzik
«Perm State National Research University»
Russian Federation

Perm, 614068



M. A. Volkova
«Perm State National Research University»
Russian Federation

Perm, 614068



E. Yu. Kochkina
«Perm State National Research University»
Russian Federation

Perm, 614068



References

1. Запорожец Г.В., Запорожец О.М. Лососеводство в зарубежных странах северотихоокеанского региона // Исслед. водн. биол. ресур. Камчатки и сев.-запад. части Тих. океана. 2011. Вып. 22. С. 28–48.

2. Коцюк Д.В. Искусственное воспроизводство тихоокеанских лососей в бассейне р. Амур: история, современное состояние, перспективы // Известия ТИНРО. 2020. Т. 200. Вып. 3. С. 530–550.

3. Кошелев В.Н., Литовченко Ж.С. Биологическая и экономическая эффективность искусственного воспроизводства осенней кеты в бассейне реки Амур // Вопр. рыболовства. 2024. Т. 25. № 4. С. 89–96.

4. Марковцев В.Г. Эффективность искусственного воспроизводства тихоокеанских лососей в странах АТР // Бюл. № 2 реализации «Концепции Дальневосточной бассейновой программы изучения лососей». Владивосток. ТИНРО-Центр, 2007. С. 87–95.

5. Рослый Ю.С. Динамика популяций и воспроизводство тихоокеанских лососей в бассейне Амура. Хабаровск: Хабаровское книжное изд-во, 2002. 210 с.

6. Смирнов А.И. Пути интенсификации воспроизводства тихоокеанских лососей // Труды ВНИРО, 1975. Т. 106. С. 130–140.

7. Чистякова А.И., Бугаев А.В. Оценка происхождения и пути миграций заводской молоди горбуши и кеты в бассейне Охотского моря в осенний период 2011–2014 гг. // Исслед. водн. биол. ресур. Камчатки и сев.-запад. части Тих. океана. 2016. Вып. 40. С. 5–23.

8. Araki H., Cooper B., Blouin M.S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild // Science. 2007. V. 318. P. 100–103.

9. Arai T., Hirata T., Takagi Y. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta // Marine Environmental Research. 2007. V. 63. P. 55–66.

10. Brenner R.E., Moffitt S.D., Grant W.S. Straying of hatchery salmon in Prince William Sound, Alaska // Environmental Biology of Fishes. 2012. V. 94. P. 179–195.

11. Buckel J.A., Sharack B.L., Zdanowicz V.S. Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. // J. Fish. Biol. 2004. V. 64 Р. 1469−1484.

12. Doubleday Z.A., Izzo C., Woodcock S.H., Gillanders B.M. Relative contribution of water and diet to otolith chemistry in freshwater fish // Aquatic Biology. 2013. V. 18 Р. 271–280.

13. Flem B., Moen V., Grimstvedt A. Trace element analysis of scales from four populations of Norwegian Atlantic salmon (Salmo salar L.) for stock identification using laser ablation inductively coupled plasma mass spectrometry // Appl. Spectrosc. 2005. V. 59. № 2. Р. 245–251.

14. Grant W.S. Understanding the adaptive consequences of hatchery-wild interactions in Alaska salmon // Environ. Biol. Fish. 2012. V. 94. № 1. Р. 325–342.

15. Hiroi O. Historical trends of salmon fisheries and stock conditions in Japan // North Pacific Anadr. Fish Com. Bul. 1998. V. 1. Р. 23–27.

16. Ingram B.A. De Silva S.S. General aspects of stock enhancement in fisheries developments. In Sena, S. De Silva, B.A. Ingram and S. Wilkinson, eds. Perspectives on culture-based fisheries developments in Asia. Bangkok, Thailand: Network of Aquaculture Centres in Asia-Pacific, 2015. Р. 27–37.

17. Lahtinen M., Arppe L., Nowell, G. Source of strontium in archaeological mobility studies-marine diet contribution to the isotopic composition // Archaeol Anthropol Sci 2021. V.13, Р. 1 https://doi.org/10.1007/s12520-020-01240-w

18. Landsman S., Stein J.A., Whitledge G. et al. Stable oxygen isotope analysis confirms natural recruitment of Lake Michigan-origin Lake Trout (Salvelinus namaycush) to the adult life stage // Fish. Res. 2017. V. 190. P. 15–23.

19. Marie A.D, Bernatchez L., Garant D. Loss of genetic integrity correlates with stocking intensity in brook charr (Salvelinus fontinalis) // Molecular Ecology. 2010. V. 19. P. 2025–2037.

20. Martin J., Bareille G., Berail S. et al. Persistence of a southern Atlantic salmon population: Diversity of natal origins from otolith elemental and Sr isotopic signatures // Can. J. of Fish. Aquat. Sciens. 2013. V. 70. Р. 182–197.

21. Mikheev P.B., Kotsyuk D.V., Podorozhnyuk E.V. et al. The identification of individuals with hatchery and natural origin in a mixed sample of Amur River chum salmon by Otolith microchemistry // Aquaculture and Fisheries. 2023. V. 8. № 3. P. 341–350.

22. Miyakoshi Y., Nagata M., Kitada S. et al. Historical and current hatchery programs and management of chum salmon in Hokkaido, northern Japan // Rev. Fish. Sci. 2013. V. 21. Р. 469–479.

23. NPAFC (The North Pacific Anadromous Fish Commission). NPAFC Statistics: Pacific Salmonid Catch and Hatchery Release Data. 2023. Accessed from https://www.npafc.org/statistics/ (дата обращения 16.08.2024 г.).

24. Otoliths offer insight into fish history. 2020. Accessed from https://www.hatcheryinternational.com/otoliths-offer-insight-into-fish-history/ (дата обращения 16.08.2024 г.).

25. Ruggerone G.T., Peterman R.M., Dorner B. et al. Magnitude and trends in abundance of hatchery and wild pink, chum, and sockeye salmon in the North Pacific Ocean // Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science. 2010. V. 2. Р. 306–328.

26. Sohn D., Kang S., Kim S. Stock identification of chum salmon (Oncorhynchus keta) using trace elements in otoliths // J. Oceanogr. 2005. V. 61. Р. 305–312.

27. Sturgeon R.E., Willie S.N., Yang L. et al. Certification of a fish otolith reference material in support of quality assurance for trace element analysis // J. of Analytical Atomic Spectrometry. 2005. V. 20. № 10. Р. 1067.

28. Tomida Y., Suzuki T., Yamada T. et al. Differences in oxygen and carbon stable isotope ratios between hatchery and wild pink salmon fry // Fish. Sci. 2014. V. 80. № 2. P. 273–280.

29. Waples R.S., Ford M.J., Schmitt D. Empirical results of salmon supplementation in the Northeast Pacific: a preliminary assessment // Ecological and genetic implications of aquaculture activities. 2007. P. 383–403.

30. Watson N.M., Prichard C.G., Jonas J.L. et al. Otolithchemistry-based discrimination of wild- and hatchery-origin Steelhead across the Lake Michigan Basin // North Amer. J. Fish. Manag. 2018. V. 38. P. 820–832.

31. Wessel M.L., Smoker W.W., Fagen R.M. et al. Variation of agonistic behavior among juvenile Chinook salmon (Oncorhynchus tshawytscha) of hatchery, hybrid, and wild origin // Can. J. Fish. Aquat. Sci. 2006. V. 63. Р. 438–447.

32. Zhivotovsky L.A., Fedorova L.K., Rubtsova G.A. et al. Rapid expansion of an enhanced stock of chum salmon and its impacts on wild population components // Environmental Biology of Fishes. 2012. V. 94. № SI1. Р. 249–258.

33. Zimmerman C.E., Swanson H.K., Volk E.C. et al. Species and life history affect the utility of otolith chemical composition for determining natal stream of origin for Pacific salmon // Trans. Am. Fish. Soc. 2013. V. 142. № 5. Р. 1370–1380.


Review

For citations:


Mikheev P.B., Koshelev V.N., Podorozhnyuk E.V., Yakubova K.S., Morozov В.О., Puzik A.J., Volkova M.A., Kochkina E.Yu. Results of identification of autumn chum salmon Oncorhynchus keta (salmoniformes) of hatch-breeder origin in the Amur River basin based on the analysis of the microchemical composition of otoliths based on the materials of 2020. Problems of Fisheries. 2024;25(4):77-88. (In Russ.) https://doi.org/10.36038/0234-2774-2024-25-4-77-88



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0234-2774 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).