THYROID HORMONES IN THE EARLY ONTOGENESIS OF FLATFISH (PLEURONECTIFORMES)
https://doi.org/10.36038/0234-2774-2020-21-4-464-477
Abstract
About the Author
N. E. BoykoRussian Federation
References
1. Битюкова Ю. Е., Ткаченко Н. К., Чепурнов А. В. К вопросу о морфофизиологических показателях эффективности перевода личинок камбалы-калкана Чёрного моря на внешнее питание при искусственном разведении // Тез. докл. 2-й Всесоюз. конф. по биологии шельфа. 1978. Ч. 1. Киев: Наукова думка. С. 22-23.
2. Бойко Н. Е., Рудницкая О. А. Физиологические механизмы адаптивных функций в раннем онтогенезе осетровых рыб / Ростов-на-Дону: ФГУП «АзНИИРХ», 2014. 224 с.
3. Гирагосов В. Е, Ханайченко А. Н., Аганесова Л. О. и др. Некоторые особенности биотехнологии культивирования черноморского калкана и перспективы ее применения в практическом рыбоводстве / Водные биоресурсы и аквакультура юга России. Краснодар, 17-19 мая 2018. С. 318-323.
4. Кузьмина В. В, Лёвин Б. А, Вэй Л.B. и др. Влияние тиреоидных гормонов на динамику активности ферментов слизистой оболочки кишечника молоди плотвы Rutilus rutilus // Вопр. ихтиологии. 2010. Т. 50. № 3. С. 405-410.
5. Маслова О. Н. Разведение и товарное выращивание черноморской камбалы-калкана Scophthalmus maeoticus: проблемы и методы // Тр. ВНИРО. 2013. Т. 150. С. 35-49.
6. Маслова О. Н., Бурлаченко И. В. Способ искусственного разведения черноморской камбалы-калкана. Патент № 2073432 RU С16А01К61/00. № 93003040/13, заявл. 18.01.93, опубл. 20.02.97. Бюл. № 1.
7. Основные результаты многолетней деятельности и перспективы исследований ЮгНИРО в области развития морской аквакультуры в Украине / В. Н. Туркулова [и др.] // Тр. ЮгНИРО. 2012. Т. 50. С. 46-80.
8. Способ снижения численности бактерий-оппортунистов в средах выращивания личинок морских рыб и их кормов / Т.В. Рауэн [и др.]. Патент 2614604, РФ. МПК A01K 61/00; заявитель и патентообладатель ФГБУН «Институт морскихбиологических исследований им. А. О. Ковалевского РАН». № 2015151334, заявл. 30.11.2015; опубл. 28.03.2017. Бюл. № 10.
9. Туркулова В. Н., Булли Л. И., Новоселова Н. В. и др. Динамика роста и выживаемости молоди черноморского калкана (Psetta maeotica maeotica Pallas) при годичном цикле выращивания в условиях бассейнового хозяйства научно-исследовательской базы ЮгНИРО «Заветное» / Современные рыбохозяйственные и экологические проблемы Азово-Черноморского региона. Материалы VIII Междунар. конф. Керчь, ЮгНИРО, 2013. С. 120-128.
10. Ханайченко А. М., Гирагосов В. Е., Ельников Д. В. и др. Способ интенсивного выращивания мальков камбалы калкан. Патент: № 2548106 RU С1 A01K61/00. № 2014150176/93, заявл. 30.10.2014, опубл. 10.04.2015. Бюл. № 10.
11. Ханайченко А. М., Планас М.И., Карнеро Д. Г. Рост, выживаемость и химический состав личинок тюрбо (Scophthalmus maximus L.) при интенсивном выращивании в «чистой» и «зеленой» воде / / Экология моря. 2000. Вып. 50. С. 78-82.
12. Arcos M. E.B., Sterle H. A., Paulazo M.A. et al. Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression // J. Cell. Physiol. 2011. V. 226. № 12. P. 3208-3218.
13. Baglole C. J, Murray H. M, Goff G. P., et al. Ontogeny of the digestive tract during larval development of the Yellow tail flounder: A light microscopy and mucous histochemical study //J. Fish Biol. 1997. V. 51. P. 120-134.
14. Browman H. I. Embryology, ethology and ecology of ontogenetic critical periods in fish // Brain Behav. Evol. 1989. V. 34. № 1. P. 5-12.
15. Cahu C. E., Infante Z., Peres A. et al. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes // Aquaculture. 1998. V. 161. № 1-4. P. 479-489.
16. Campinho M. A. Teleost metamorphosis: The role of thyroid hormone // Front. Endocrinol. (Lausanne). 2019. V. 10. P. 383. DOI: 10.3389/fendo.2019.00383.
17. Chantanachookhin C., Seikai T, Tanaka M. Comparative study of the ontogeny of the lymphoid organs in three species of marine fish // Aquaculture. 1991. V. 99. P. 143-155.
18. Conceicao L.E.C., Yufera M., Makridis P.et al. Live feeds for early stages of fish rearing // Aquatic. Res. 2010. V. 41. № 5. P. 613640.
19. Coutteau P., Geurden I., Camara M. R. et al. Review on the dietary effects of phospholipids in fish and crustacean larviculture // Aquaculture. 1997. V. 155. P. 149-164.
20. Eales J. G. The peripheral metabolism of thyroid hormones and regulation of thyroidal status in poikilotherms // Can. J. Zool. 1985. V. 63. P. 1217-1231.
21. Finn R. N., Rennestad I. The effect of acute changes in temperature and light on the aerobic metabolism of embryos and yolk-sac larvae of turbot (Scophthalmus maximus) // Can. J. Fish. Aquat. Sci. 2003. V. 60. № 11. P. 1324-1331.
22. Geffen A. J., van der Veerb H.W., Nashc R. D.M. The cost of metamorphosis in flatfishes // J. Sea Res. 2007. V. 58. P. 35-45.
23. Gomes A. S., Alves R. N., Rennestad I. et al. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis // Gen. Comp. Endocrinol. 2015. V. 220. P. 2-12.
24. Hamre K., Srivastava A., Rennestad I. et al. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae // Aquaculture Nutrition. 2008. № 14. P. 51-60.
25. Hamre K., Yu'fera M., Rennestad I. et al. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing // Reviews in Aquaculture. 2013. № 5 (Suppl. 1). P. 26-58.
26. Heyland A., Moroz E. E. Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae // J. Exp. Biol. 2006. V. 208. P. 4355-4361.
27. Hjort J. Fluctuations in the great fisheries of Northen Europe viewed in the light of the biological research //J. Cons. Perm. Intern. Explor. Mer. 1926. V. 1. P. 5-38.
28. Hulbert A. J. Thyroid hormones and their effects: a new perspective / / Biol. Rev. Camb. Philos. Soc. 2000. V. 75. P. 519-631.
29. Ishizuya-Oka A., ShiY.B. Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration // Dev. Growth Differ. 2005. № 47. P. 601-607.
30. Javier L. H., Benzekri H., Gut M. et al. Characterization of iodine-related molecular processes in the marine microalga Tisochrysis lutea (Haptophyta) // Front. Mar. Sci. 2018. № 5. DOI: 10.3389/fmars.2018.00134.
31. Jesus de E.G., Hirano T, Inui Y. Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in the Japanese flounder, Paralichthys olivaceus // Gen. Comp. Endocrinol. 1991. V. 82. P. 369-376.
32. Karlsen 0., van der Meeren T, Rennestad I. et al. Copepods enhance nutritional status, growth and development in Atlantic cod (Gadus morhua L.) larvae - can we identify the underlying factors? // Peer J. 2015. № 3: e902. DOI: 10.7717/peerj.902.
33. Khalil N. A, Khalaf Allah H. M.M., Mousa M. A. The effect of maternal thyroxine injection on growth, survival and development of the digestive system of Nile tilapia, Oreochromis niloticus larvae // Adv. Biosci. Biotechnol. 2011. V. 2. № 5. P. 320-329.
34. Kim B. G., Brown C. L. Interaction of cortisol and thyroid hormone in the larval development of pacific threadfin // Amer. Zool. 1997. V. 37. P. 470-481.
35. Kim B. G., Brown C. L. Hormonal manipulation of digestive enzyme ontogeny in marine larval fishes - effects on digestive enzymes // UJNR Technical Report. 2002. № 28. P. 47-55.
36. Koven W. Key factors influencing juvenile quality in mariculture: a review / / Israeli Journal of Aquaculture-Bamidgeh. 2003. V. 55. P. 283-297.
37. Makridis P., Olsen Y. Protein depletion of the rotifer Brachionus plicatilis during starvation // Aquaculture. 1999. V. 174. P. 343-353.
38. Manchado M., Infante C., Asensio E. et al. Thyroid hormones down-regulate thyrotropin [beta] subunit and thyroglobulin during metamorphosis in the flatfish Senegalese sole (Solea senegalensis Kaup) // Gen. Comp. Endocrinol. 2008. V. 155. № 4. P. 447-455.
39. Marchand О., Duffraisse М, Safi G.T.R., et al. Molecular cloning and developmental expression patterns of thyroid hormone receptors and T3 target genes in the turbot (Scophtalmus maximus) during post-embryonic development // Gen. Comp. Endocrinol. 2004. V. 135. № 3. P. 345-357.
40. Meng Z., Hu P., Lei J. et al. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus) // J. Comp. Endocrinol. 2016. V. 235. № 1. P. 11-17.
41. Miwa S., Inui Y. Histological changes in the pituitary-thyroid axis during spontaneous and artificially-induced metamorphosis of larva of the flounder Paralichthys olivaceus // Cell Tissue Res. 1987.V. 249. P. 117-123.
42. Miwa S., Yamano K., Inui Y. Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis // J. Exp. Zool.1992. V. 261. P. 424-430.
43. Moren M., Opstadl., van Der Meeren T. et al. Iodine enrichment of Artemia and enhanced levels of iodine in Atlantic halibut larvae (Hippoglossus hippoglossus L.) fed the enriched Artemia // Aquacult. Nutrition. 2006. V. 12. № 2. P. 97-102.
44. Moren M, Sloth J. J., Hamre K. Uptake of iodide from water in Atlantic halibut larvae (Hippoglossus hippoglossus L.) // Aquaculture. 2008. V. 285. P. 174-178.
45. Morris A. L., Hamlin H. J., Francis-Floyd L.J. et al. Nitrate-induced goiter in captive whitespotted bamboo sharks Chiloscyllium plagiosum // J. Aquatic Animal Health. 2011. V. 23. № 2. P. 92-99.
46. Moteki M., Yoseda K., Sahin T. et al. Transition from endogenous to exogenous nutritional sources in larval Black Sea turbot Psetta maxima // Fish. Sci. 2001. V. 67. P. 571- 578.
47. Mourad M. M., Ismail R. F. Iodine indirect effect on thyroid gland: structure and hormone receptor (TRa) in common sole, Solea solea larvae // Int. J. Fish. Aquatic Stud. 2018. V. 6. № 6. P. 26-32.
48. Nxss T., Lie 0. A sensitive period for the determination of pigmentation patternin Atlantic halibut, Hippoglossus hippoglossus L. juveniles: the role of diet // Aquacult. Res. 1998. V. 29. P. 925-934.
49. Nielsen J. G. Scophthalmidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds). Fishes of the North-Eastern Atlantic and Mediterranean, V. III. UNESCO, Paris, 1986. P. 1287-1293.
50. lie G., Makridis P, Reitan K. I. et al. Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus) // Aquaculture. 1997. № 153. P. 103-122.
51. Olsen Y. Live food technology of coldwater marine fish larvae. In: Kjorsvik E. M., Olsen Y. (eds). Blackwell Publishing, Oxford, UK. Culture of Cold-water Marine Fish. 2004. P. 73-193.
52. Padros F., Minkoff G., Sala R., et al. Histological events throughout the development of turbot, Scophthalmus maximus larvae // J. Comp. Pathology. 1993. V. 109. P. 321334.
53. Penglase S. Harboe T. Side 0.et al. Iodine nutrition and toxicity in Atlantic cod (Gadus morhua) larvae // Peer J. 2013. № 1: e20; DOI: 10.7717/peerj.20.
54. Pittman K., Yufera M., Pavlidis M. et al. Fantastically plastic: fish larvae equipped for new world // Rev. Aquacult. 2013. V. 5. P. 224-267.
55. Power D. M., Einarsdottir I. E., Pittman K. et al. The molecular and endocrine basis of flatfish metamorphosis // Rev. Fish. Sci. 2008. № 16 (S1). P. 93-109.
56. Reitan K. I., Rainuzzo J. R., 0lie G. et al. Nutritional effect of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae // Aquaculture. 1993. № 118. P. 257275.
57. Ribeiro A. R.A., Ribeiro L., Saele O. et al. Iodine and selenium supplementation increased survival and changed thyroid hormone status in Senegalese sole (Solea senegalensis) larvae reared in a recirculation system // Fish Physiol. Biochem. 2012. V. 38. P. 725-734.
58. Rocha R., Ribeiro L., Costa R. et al. Does the presence of microalgae influence fish larvae prey capture? // Aquacult. Res. 2008. № 39. P. 362-369.
59. §ahin T. Larval rearing of the black sea turbot, Scophthalmus maximus (Linnaeus, 1758) under Laboratory Conditions / / Turk. J. Zool. 2001. № 25. P. 447-452.
60. Schreiber A. M. Flatfish: An asymmetric perspective on metamorphosis. In Yun-Bo Shi, editor: Current Topics in Developmental Biology, Burlington: Acad. Press, 2013. V. 103. P. 167-194.
61. Schreiber A. M., Specker J. L. Metamorphosis in the summer flounder (Paralichthys dentatus): influence of stage-specific thyroidal status on larval development and growth // Gen. Comp. Endocrinol. 1998. V. 111. P. 156-166.
62. Segner H., Storch V., Reinecke M. et al. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus // Mar. Biol. 1994. V. 119. P. 471486.
63. Sirakov M., Boussouar A., Kress E. et al. The thyroid hormone nuclear receptor TRa1 controls the Notch signaling pathway and cell fate in murine intestine // Development. 2015. V.142. P. 2764-2774.
64. Solbakken J. S., Berntssen M. H.G., Norberg B. et al. Differential iodine and thyroid hormone levels between Atlantic halibut (Hippoglossus hippoglossus L.) larvae fed wild zooplankton or Artemia from first exogenous feeding until post metamorphosis // J. Fish Biol. 2005. V. 61. P. 1345-1362.
65. Specker J. L. Preadaptive role of thyroid hormones in larval and juvenile salmon: growth the gut and evolutionary considerations // Amer. Zool. 1988. V. 28. P. 337-349.
66. Srivastava A., Hamre K., Stoss J., Nordgreen A. A study on enrichment of the rotifer Brachionus «Cayman» with iodine from different sources / / Aquaculture. 2012. V. 334-337. P.82-88. DOI: 10.1016/j.aquaculture.2011.12.025. 53.
67. Tagawa M, Brown C. L. Entry of thyroid hormones into tilapia oocytes / / Comp. Biochem. Physiol. 2001. V. 129. P. 605-611.
68. Tata J. R. Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone // Cell Res. 1998. V. 8. № 4. P. 259-272.
69. Taylor E., Heyland A. Evolution of thyroid hormone signaling in animals: Nongenomic and genomic modes of action // Molecular and Cellular Endocrinology. V. XXX. 2017. P. 1-7.
70. Tong X. Yang X., Bao Ch. et al. Ontogeny of the digestive enzymes, thyroid hormones and cortisol in developing embryos and yolk-sac larvae of turbot (Scophthalmus maximus L.) // Aquaculture. 2017. V. 479. № 1. P. 704-711.
71. Torres-Nunez E., Cal R., Rotllant J. Phenotypic plasticity during early ontogeny in cultured turbot (Scophthalmus maximus): changes in dorsal and anal fin ray counts by water temperature // J. Appl. Ichth. 2014. V. 30. № 4. P. 762-766.
72. Ueberschar B. Critical times for fish larvae - measurement of tryptic activity in order to assess the nutritional condition of fish larvae from laboratory rearing and from field samples an overview. Verhandl. Gesellsch. Ichthyol. (Gfl). 2006. V. 5. P 193-229.
73. Yamano K. The role of thyroid hormone in fish development with reference to aquaculture, review // JARQ. 2005. V. 39. № 3. P. 161-168.
74. Yamano K., Miwa S. Differential gene expression of thyroid hormone receptor a and P in fish development // Gen. Comp. Endocrinol. 1998. V. 109. P. 75-85.
Review
For citations:
Boyko N.E. THYROID HORMONES IN THE EARLY ONTOGENESIS OF FLATFISH (PLEURONECTIFORMES). Problems of Fisheries. 2020;21(4):464-477. (In Russ.) https://doi.org/10.36038/0234-2774-2020-21-4-464-477