Analysis of haddock distribution in the Barents sea using species distribution modeling (SDM)
https://doi.org/10.36038/0234-2774-2025-26-3-51-64
EDN: GOFCPK
Abstract
This study reports the findings of an evaluation of the impact of abiotic environmental conditions on the dispersion of the northeast Arctic haddock population. The distribution of haddock is significantly influenced by temperature, ice cover, depth, salinity, and water clarity. The presence of haddock is most strongly correlated with the average water temperature during the warmest month and the highest yearly bottom temperature among thermal characteristics. The region of the Barents Sea with a high likelihood of haddock presence (P > 0,5) is predicted to cover 820,000 km², accounting for 29,3% of the whole Barents Sea area. The CMIP6 climate model’s forecast scenarios indicate that climatic warming by the end of the 21st century is likely to cause a substantial increase (by 9–50%) in the potential distribution area of haddock in the Barents Sea.
About the Authors
S. V. BakanevRussian Federation
A. A. Russkikh
Russian Federation
References
1. Андрияшев А.П. Рыбы северных морей СССР. М.–Л.: Изд-во АН СССР, 1954. 566 с.
2. Алеев В.Р. Пикша (Melanogrammus aeglefinus) Баренцева моря // Тр. ПИНРО. 1944. Вып. 8. С. 187–233.
3. Добровольский А.Д., Залогин Б.С. Моря СССР. М.: Изд-во МГУ, 1982. 192 с.
4. Долгов А.В. Состав, формирование и трофическая структура ихтиоценов Баренцева моря. Мурманск: ПИНРО, 2016. 335 с.
5. Иоганзен Б.Г., Файзова Л.В. Об определении показателей встречаемости, обилия, биомассы и их соотношения у некоторых гидробионтов // Элементы водных экосистем. М.: Наука, 1978. С. 215–225.
6. Киктев Д.Б., Муравьев А.В., Бундель А.Ю. Методические рекомендации по верификации метеорологических прогнозов. М.: Типография АМА ПРЕСС, 2021. 94 с.
7. Кровнин А.С., Мельников С.П., Никитенко А.И., Мурый Г.П. Влияние современных изменений климата на сообщества морских рыб в североатлантическом регионе // Геоэкология. 2019. Вып. 56. С. 110–125.
8. Лепесевич Ю.М. Урожайность поколений и промысел северо-восточной арктической пикши Melanogrammus aeglefinus (Linne) // Автореф. дис. … канд. биол. наук. Мурманск: ПИНРО, 2003. 23 с.
9. Маслов Н.А. Донные рыбы Баренцева моря и их промысел // Тр. ПИНРО. 1944. Вып. 8. С. 3–186.
10. Мастицкий С.Э., Шитиков В.К. Статистический анализ и визуализация данных с помощью R. 2014. Электронная книга. URL: http://ranalytics.blogspot.com
11. Мухина Н.В. Динамика численности пикши (Melanogrammus aeglefinus L.) Баренцева моря в раннем онтогенезе: Автореф. дис. … канд. биол. наук. Мурманск, 2000. 132 с.
12. Сонина М.А. Миграции пикши Баренцева моря и причины их изменений // Тр. ПИНРО. 1968. Вып. 23. С. 383–401.
13. Сонина М.А. Миграции пикши Баренцева моря и факторы, их определяющие // Тр. ПИНРО. 1969. Вып. 26. 126 с.
14. Сонина М.А. Аркто-норвежская пикша // Промысловые биологические ресурсы Северной Атлантики и прилегающих морей Северного Ледовитого океана. М.: Пищ. пром-сть, 1977. С. 321–333.
15. Сонина М.А. Соотношение неполовозрелой и половозрелой пикши Melanogrammus aeglefinus (L.) и её распространение в Баренцевом и Нор вежском морях // Биологические ресурсы шельфовых и окраинных морей. М.: Наука, 1990. С. 233–242.
16. Шитиков В.К. Модели р а спределения видов // Принципы экологии. 2021. № 4. С. 98–100.
17. Albert O.T. Ecology of haddock (Melanogrammus aeglefinus L.) in the Norwegian Deep // ICES J. mar. Sci. 1994. V. 51. P. 31–44.
18. Allouche O., Tsoar A., Kadmon R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS) // J. of Applied Ecology. 2006. V. 43. P. 1223–1232.
19. Assis J., Tyberghein L., Bosch S. et al. Bio-ORACLE v3.0: Expanding marine data layers for biogeographical modelling // Global Ecology and Biogeography. 2024. V. 33(4). P. 123–135.
20. Breheny P., Burchett W. Visualization of Regression Models Using visreg // The R Journal. 2017. Vol. 9(2). P. 56–71.
21. Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees. Wadsworth Inc., 1984. 368 p.
22. Breiman L. Random forests // Machine Learning. 2001. V. 45. P. 5–32.
23. Busby J.R. BIOCLIM – a bioclimate analysis and prediction system // Nature Conservation: Cost Effective Biological Surveys and Data Analysis. CSIRO: Melbourne. 1991. P. 64–68
24. Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees // Journal of Animal Ecology. 2008. V. 77. P. 802–813.
25. Eriksen E., Gjøsæter H., Prozorkevich D. et al. From single species surveys towards monitoring of the Barents Sea ecosystem // Progress in Oceanography. 2018. V. 166. P. 4–14.
26. Eyring V., Bony S., Meehl G.A. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geoscientific Model Development. 2016. V. 9. P. 1937–1958.
27. Fielding A. H., Bell J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models // Environ. Conservation. 1997. V. 24, № 1. P. 38–49.
28. Fisher R.A. The design of experiments. London: Oliver and Boyd, 1935. 252 p.
29. Frame B., Lawrence J., Ausseil A.-G. et al. Adapting global shared socio-economic pathways for national and local scenarios // Clim. Risk Manage. 2018. V. 21. P. 39–51.
30. Friedman J.H. Multivariate Adaptive Regression Splines // The Annals of Statistics. 1991. V. 19. P. 839–867.
31. Friedman J.H. Greedy Function Approximation: A Gradient Boosting Machine // Annals of Statistics. 2001. V. 29. P. 1189–1232.
32. Guisan A., Thuiller W., Zimmermann N. Habitat Suitability and Distribution Models. With Applications in R. Cambridge University Press, 2017. 462 p.
33. Guisan A., Zimmermann N. Predictive habitat distribution models in ecology // Ecological Modelling. 2000. V. 135. P. 147–186.
34. Hastie T., Tibshirani R., Buja A. Flexible discriminant analysis by optimal scoring // Journal of the American Statistical Association. 1994. V. 89. P. 1255–1270.
35. Hastie T., Tibshirani R. Generalized Additive Models. London: Chapman and Hall, 1990. 334 p.
36. Hosmer D.W., Lemeshow S. Applied logistic regression. 2nd ed. Wiley, 2000. 397 p.
37. Howell et al. Report of the Joint Russian-Norwegian Working Group on Arctic Fisheries (JRNAFWG). IMR-PINRO, 2024. V. 2024-7. 167 p.
38. ICES. Working Group on the Integrated Assessments of the Barents Sea (WGIBAR) // ICES Scientific Reports. 2022. V. 4(50). 235 p.
39. Jónsdóttir I.G., Björnsson B., Ragnarsson S.Á. et al. Spatial distributional shifts and associated body condition changes of haddock (Melanogrammus aeglefinus) following population expansion // ICES J. of Marine Science. 2024. V. 81. Issue 3. P. 587–599.
40. Kearney M., Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species ranges // Ecology Letters. 2009. V. 12. P. 334–350.
41. Landa C.S., Ottersen G., Sundby S., Dingsør G.E., Stiansen J.E. Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus) // Fish. Oceanogr. 2014. V. 23(6). P. 506–520.
42. Langangen O., Stige L.C., Kvile K.O. et al. Multi-decadal variations in spawning ground use in Northeast Arctic haddock (Melanogrammus aeglefinus) // Fisheries Oceanography. 2018. V. 27. P. 435– 444.
43. McCullagh P. Generalized linear models // European J. of Operational Research. 1984. V. 16. P. 285–292.
44. Mielke P.W., Berry K.J. Permutation Methods: A Distance Function Approach. Springer Series in Statistics. New York: Springer, 2001. 446 p.
45. Notz D. Arctic Sea Ice in CMIP6 // Geophysical Research Letters. 2020. V. 47. 11 p.
46. Pearson R.G., Dawson T.P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? // Global Ecology and Biogeography. 2003. V. 12. P. 361–371.
47. Pearson R.G. Species’ distribution modeling for conservation educators and practitioners // Lessons in Conservation. American Museum of Natural History. 2007. Vol. 3. P. 54–89.
48. Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions // Ecological Modelling. 2006. V. 190. P. 231–259.
49. Ripley B.D. Pattern recognition and neural networks. Cambridge University Press, 2007. 403 p.
50. Russkikh A.A., Dingsør G.E. Haddock // The Barents Sea: ecosystem, resources, management. Half a century of Russian-Norwegian cooperation / Eds. Jakobsen T., Ozhigin V. Trondheim: Tapir Acad. Press, 2011. P. 271–280.
51. Séférian R., Berthet S., Yool A. et al. Tracking Improvement in Simulated Marine Biogeochemis try Between CMIP5 and CMIP6 // Current Climate Change. 2020. V. 6(3). P. 95–119.
52. Smolik M.G., Dullinger S., Essl F. et al. Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant // J. of Biogeography. 2010. V. 37. P. 411– 422.
53. Thuiller W. BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change // Global Change Biology. 2003. V. 9. P. 1353–1362.
Review
For citations:
Bakanev S.V., Russkikh A.A. Analysis of haddock distribution in the Barents sea using species distribution modeling (SDM). Problems of Fisheries. 2025;26(3):51-64. (In Russ.) https://doi.org/10.36038/0234-2774-2025-26-3-51-64. EDN: GOFCPK