SEQUENTIAL PARTICLE METHODS FOR BAYESIAN EVALUATIONS OF ABUNDANCE AND CATCH AT AGE
Abstract
About the Author
I. I. ShevchenkoRussian Federation
References
1. Шевченко И. И. Моделирование промысловых запасов при известных оценках возрастной структуры популяций и уловов // Вопр. рыболовства. 2017. Т. 18. № 4. С. 507- 519.
2. Шевченко И. И. Моделирование промысловых запасов при известных оценках возрастной структуры популяций и уловов. II // Вопр. рыболовства. 2019. Т. 20. № 2. С. 152-163.
3. Aldrin M., Aanes S., Subbey S. Comments on incongruous formulations in the sam (state-space assessment model) model and con sequences for fish stock assessment // Fisheries Research, 2019. № 210. P. 224-227.
4. Crisan D., Doucet A. A survey of convergence results on particle filtering methods for practitioners / / IEEE Transactions on signal processing. 2002. V. 50. № 3. P. 736-746.
5. Doucet A., Godsill S., Andrieu C. On sequential monte carlo sampling methods for bayesian filtering // Statistics and computing. 2000. V. 10. № 3. P. 197-208.
6. Godsill S. J, Doucet A, West M. Monte carlo smoothing for nonlinear time series // J. American statistical association, 2004. V. 99. № 465. P. 156-168.
7. Gordon N.,Salmond D. J.,Smith A. F. M. Novel approach to nonlinear/ non-gaussian bayesian state estimation // IEE Proceedings F (Radar and Signal Processing). 1993. V. 140. P. 107-113.
8. Hurzeler M., Kunsch H. R. Monte carlo approximations for general state-space models // J. Computational and Graphical Statistics. 1998. V. 7. № 2. P. 175-193.
9. Kitagawa G. Monte carlo filter and smoother for non-gaussian nonlinear state space models // J. computational and graphical statistics. 1996. V. 5. № 1. P. 1-25.
10. Kotz S., Kozubowski T. J., Podgorski K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Basel: Birkhauser. 2001. 349 p.
11. Nielsen A, Berg C.W. Response to: Comments on incongruous formulations in the sam (state-space assessment model) model and consequences for fish stock assessment // Fisheries Research. 2019. № 210. P. 228229.
12. Russell S. J., Norvig P. Artificial Intelligence: A Modern Approach. Upper Saddle River: Prentice Hall, 2010. 1152 p.
13. Sarkka S. Bayesian filtering and smoothing. Cambridge: Cambridge University Press, 2013. 254 p.
14. Schnute J. T. A general framework for developing sequential fisheries models // Canadian J. Fisheries and Aquatic Sciences. 1994. V. 51. № 8. P. 1676-1688.
15. Smith A. F. M, Gelfand A. E. Bayesian statistics without tears: a sampling-resampling perspective // The American Statistician. 1992. V. 46. № 2. P. 84-88.
16. Valpine P. de, Hilborn R. State-space likelihoods for nonlinear fisheries time-series // Canadian J. Fisheries and Aquatic Sciences. 2005. V. 62. № 9. P. 1937-1952.
Review
For citations:
Shevchenko I.I. SEQUENTIAL PARTICLE METHODS FOR BAYESIAN EVALUATIONS OF ABUNDANCE AND CATCH AT AGE. Problems of Fisheries. 2020;21(2):235-249. (In Russ.)